MAR05-2004-001099

Abstract for an Invited Paper for the MAR05 Meeting of the American Physical Society

Spin Transport in Carbon Nanotubes CHRISTIAN SCHOENENBERGER, Institute of Physics, Univ. of Basel

We report on spin transport in carbon nanotubes. First, spin injection in arc-discharge grown multi-walled carbon nanotubes (MWNTs) is achieved by using a ferromagnetic PdNi alloy as contact material. The two contacts, i.e. source and drain, have different shape rendering different magnetic switching fields. Typical two-terminal resistances are in the range of 5-100 kOhm. We find a tunneling magneto resistance (TMR) signal amounting to 2.5-3%. Secondly, we explore the TMR signal as a function of temperature T, source-drain voltage Vsd, and gate voltage Vg. As expected the TMR signal decays with T and Vsd. Remarkably, however, we find a sign change in the spin signal (the TMR signal) as a function of both Vsd and Vg. This work has been done in collaboration with: S. Sahoo and T. Kontos (Univ. of Basel), C. Sürgers (Univ. of Karlsruhe), and L. Forro (EPFL Lausanne).