Abstract Submitted for the MAR05 Meeting of The American Physical Society

Temperature dependence of the lattice misfit in γ/γ' superalloys: role of thermal expansion and composition changes¹ O.YU. KONT-SEVOI, YU.N. GORNOSTYREV, A.J. FREEMAN, Northwestern University, K.YU. KHROMOV, Kurchatov Institute, Moscow, Russia — The magnitude of the lattice misfit δ between the γ and γ' phases is one of the key parameters determining the mechanical behavior, microstructure morphology and stability of γ/γ' high temperature superalloys. The relative importance of two contributions to the temperature dependence $\delta(T)$ are under intense investigation, namely: (i) the difference in thermal expansion of the two phases, and (ii) the redistribution of alloying component between γ and γ' with the increase of temperature. We explore the role of both contributions for the Ni-Al and Ir-Nb γ/γ' two-phase alloys based on ab *initio* full-potential total energy and phonon spectra calculations. We demonstrate that the redistribution of the major alloy components (Al into Ni and Ni into Ni_3Al) gives the main contribution to $\delta(T)$ for Ni/Ni₃Al at T >600 K. For the Ir/Ir₃Nb system, the alloy component redistribution starts to contribute to $\delta(T)$ only at extremely high temperatures (>2000 K). The amplitude of these contributions can be determined by considering the shape of the $\gamma - \gamma'$ gap on phase diagrams. This conclusion is important for alloy design as it allows one to establish a simple relation between the alloy phase diagram and the temperature dependence $\delta(T)$.

¹Supported by the AFOSR (Grant No. FA9550-04-1-0013)

O.Yu. Kontsevoi Northwestern University

Date submitted: 28 Nov 2004

Electronic form version 1.4