Air-liquid interface of ionic liquid-water binary system studied by surface tension measurement and sum-frequency generation spectroscopy

JAEOH SUNG, YOONNAM JEON, DOSEOK KIM, Department of Physics, Sogang University, TAKASHI IWAHASHI, TOSHIFUMI IIMORI, KAZUHIKO SEKI, YUKIO OUCHI, Department of Chemistry, Nagoya University — Surface of room-temperature ionic liquid (RIL)+water mixture is investigated using surface tension measurement and surface sum-frequency generation (SFG) vibrational spectroscopy. Results indicate the liquid surface is mostly covered by the cations at a very low bulk concentration (less than 0.02 bulk mole fraction). Increase of surface tension from 0.016 up to ~0.05 mole fraction suggested that the anions start to appear at the surface from ~0.016 mole fraction until the anions and cations are equally populated at c~0.05 or higher. From the analysis of the SFG spectra, the terminal CH$_3$ group of the butyl chain is polar-oriented with its symmetry axis aligning rather vertical to the surface for the whole range of concentration.

Jaeho Sung
Department of Physics, Sogang University