Non-bolometric Photoresponse in Thin Films of Perovskite Manganeses

M. RAJ RAJESWARI, MASON OVERBY, VERA SMOLYANINOVA, DAVID COX, ANTHONY DAVIDSON, Towson University — We have studied the light induced resistance changes (photoresponse) in the thin films of several manganite systems that undergo insulator-metal transition. While the photoresponse in materials such as La$_{1-x}$Ca$_x$MnO$_3$ is purely thermal (bolometric) in origin, we find that photoresponse of low Tc manganites that exhibit first order percolative transitions (e.g. La$_{0.7-y}$Pr$_y$CaMnO$_3$) is remarkably different. In these latter type of materials, we observe photoresponse that cannot be accounted for by thermal effects alone. The temperature dependence of the non-bolometric response suggests a light-induced reduction in the resistivity. We believe that the origin of the non-bolometric response is linked to the co-existence of the charge ordered insulating (COI) regions with the ferromagnetic metallic regions (FMM) in the low Tc materials. Reduction in resistivity could arise due to the radiation induced switching of the COI regions into the FMM state. We will discuss the details of the non-bolometric response including its dependence on temperature, radiation intensity and frequency, its relaxational dynamics and the possible correlation with magnetoresistance. This work is supported by the NSF grants DMR-0116619 and DMR-0348939, Undergraduate Research Grant from the College of Science and Mathematics, Towson University and the Federal work-study support for M. Overby.

M. Raj Rajeswari
Towson University

Date submitted: 29 Nov 2004