Abstract Submitted for the MAR05 Meeting of The American Physical Society

Curved Nanowire Structures JENS GRAVESEN, Mads Clausen nstitute, University of Southern Denmark, DENMARK, MORTEN WILLATZEN, Mads Clausen nstitute, University of Southern Denmark, DENMARK — Schroedinger eigenstates and associated eigenvalues are found and discussed in terms of symmetry properties for a quantum- mechanical particle confined to a curved nanowire having arbitrary cross-sectional geometry. The three-dimensional Schroedinger problem is simplified mathematically using differential-geometry arguments so as to obtain three ordinary differential equations which can be solved computationally fast even for complex-curved nanowire structures. This simplification is possible as long as the nanowire radius of curvature is considerably larger than the nanowire cross- sectional dimensions. We consider in details the computational problems of a straight nanowire with two subsequent 90 degree bendings, the sinusoidal-shaped nanowire, the elliptical-shaped nanowire based on the analytical fact that the model presented gives exact (excellent) agreement with the corresponding three- dimensional treatment in the cases of a nanowire with a straight-line shaped (circular-shaped) axis.

> Morten Willatzen Mads Clausen nstitute, University of Southern Denmark, DENMARK

Date submitted: 28 Nov 2004

Electronic form version 1.4