Abstract Submitted for the MAR05 Meeting of The American Physical Society

ESR of Gd^{3+} in the Intermediate Valence YbAl₃ and its Reference Compound LuAl₃ R.R. URBANO, M.A. PIRES, E.M. BITTAR, C. RETTORI, P.G. PAGLIUSO, IFGW-Unicamp, Campinas-SP 13083-970, Brazil, B. MAGILL, National High Magnetic Field Laboratory and Department of Physics, Florida State University, Tallahassee, FL 32306, U.S.A., S. OSEROFF, San Diego State University, San Diego, CA 92182, U.S.A. — Electron Spin Resonance (ESR) experiments were performed on Gd^{3+} doped YbAl₃ intermediate-valence (IV) compound and its reference compound LuAl₃. A Korringa rate, $d(\Delta H)/dT \simeq 14~\mathrm{Oe/K}$, and a negative g shift, $\Delta g \simeq 0.01$, are obtained for Yb_{0.996} $\mathrm{Gd}_{0.004}\mathrm{Al}_3$. These data are compared to a smaller positive g shift and Korringa rate found for the reference Lu-based compound. Our results suggest that the density of states at the Fermi level is built up of multiple bands for both materials. Effects associated with the low temperature energy scale ($T \simeq 10~\mathrm{K}$) of YbAl₃ are taken into account to interpret our ESR results. Magnetic susceptibility and specific heat measurements are also presented.

Pascoal Pagliuso IFGW-Unicamp, Campinas-SP 13083-970, Brazil

Date submitted: 22 Dec 2004 Electronic form version 1.4