Revised superconducting phase diagram of hole doped Na$_x$CoO$_2$·yH$_2$O

C.J. MILNE, D.N. ARGYRIOU, A. CHEMSEDDINE, N. ALIOUANE, J. VEIRA, S. LANDSGESELL, D. ALBER, Hahn-Meitner-Institut, Glienicker Str. 100, Berlin D-14109, Germany — We have studied the superconducting phase diagram of Na$_x$CoO$_2$·yH$_2$O as a function of electronic doping, characterizing our samples both in terms of Na content x and the Co valence state.[1] Our findings are consistent with a recent report that intercalation of H$_3$O$^+$ ions into Na$_x$CoO$_2$, together with water, act as an additional dopant indicating that Na sub-stochiometry alone does not control the electronic doping of these materials. We find a superconducting phase diagram where optimal T$_c$ is achieved through a Co valence range of 3.24 - 3.35, while T$_c$ decreases for materials with a higher Co valence. The critical role of dimensionality in achieving superconductivity is highlighted by similarly doped non-superconducting anhydrous samples, differing from the superconducting hydrate only in inter-layer spacing. The increase of the interlayer separation between CoO$_2$ sheets as Co valence is varied into the optimal T$_c$ region is further evidence for this criticality.[1] C.J. Milne et al., Phys.Rev.Lett., in press (2004). Also cond-mat/0401273.

Dimitri Argyriou
Hahn-Meitner-Institut

Date submitted: 29 Nov 2004

Electronic form version 1.4