Tracer Diffusion of Polystyrene in Lightly Sulfonated Polystyrene

CHEN XU, Department of Materials Science and Engineering, University of Pennsylvania, NANCY ZHOU, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, WESLEY BURGHARDT, Department of Chemical Engineering, Northwestern University, KAREN WINEY, Department of Materials Science and Engineering, University of Pennsylvania, RUSSELL COMPOSTO, Department of Materials Science and Engineering, University of Pennsylvania — The tracer diffusion coefficient D^\ast of deuterated polystyrene (d-PS) ($M_w = 65,900$ g/mol) in lightly sulfonated polystyrene (P(S-SS$_x$)) ($M_w = 65,000$ g/mol) as a function of sulfonation mole fraction (x) was measured by forward recoil spectrometry (FRES). For $x < 0.7\%$, d-PS undergoes Fickian diffusion; however, as x increases beyond 0.7%, partial miscibility and eventually immiscibility occurs. For $x < 1\%$, D^\ast exponentially decreases with sulfonation, according to $D^\ast = D_o \exp(-0.14 N_s)$, where N_s is the number of sulfuric acid groups per chain. This slowing-down is attributed to an increase in the monomeric friction coefficient which increases with sulfonation. The diffusion mechanism includes both reptation and constraint release. The monomeric friction coefficient for d-PS in P(S-SS$_x$) is compared with the coefficient for P(S-SS$_x$) measured by rheology.

Chen Xu
Department of Materials Science and Engineering, University of Pennsylvania

Date submitted: 29 Nov 2004
Electronic form version 1.4