Abstract Submitted for the MAR05 Meeting of The American Physical Society

New heavy fermion compounds Yb₄Ni₉Al₂₄ and YbRh₃Si₇ GER-ARD LAPERTOT, EMILIA MOROSAN, SERGEY L. BUD'KO, Ames Laboratory and Dept. of Physics and Astronomy, Iowa State University, YURIJ MOZHARIVSKYJ, Ames Laboratory and Dept. of Chemistry, Iowa State University, PAUL C. CANFIELD, Ames Laboratory and Dept. of Physics and Astronomy, Iowa State University — Yb₄Ni₉Al₂₄ and YbRh₃Si₇ are newly discovered compounds, with triclinic (space group P $\bar{1}$) and rhombohedral (space group R $\bar{3}$ c) crystal structure respectively, and two, and respectively one Yb site in the unit cell. Measurements on solution-grown single crystals of Yb₄Ni₉Al₂₄ and YbRh₃Si₇ indicate anisotropic susceptibility and field-dependent magnetization for both compounds. No apparent magnetic ordering was observed in Yb₄Ni₉Al₂₄ down to 1.8 K, whereas the YbRh₃Si₇ data are consistent with a ferromagnetic component of the ground state below ~ 10 K, for H || (ab). We are also presenting zero-field resistivity and specific heat data, based on which and YbRh₃Si₇ can be classified as new stoichiometric heavy fermion compounds.

Emilia Morosan

Date submitted: 29 Nov 2004 Electronic form version 1.4