Abstract Submitted for the MAR05 Meeting of The American Physical Society

Tunneling magnetoresistance studies of $Sr_3Ru_2O_7$ JOE HOOPER, MENG ZHOU, ZHIQIANG MAO, Tulane University, USA, ROBIN PERRY¹, YOSHITERU MAENO, Kyoto University, Japan — Recent work has supported the existence a new type of field- tuned quantum phase transition (QPT) in the double layered ruthenate $Sr_3Ru_2O_7$. To further probe the physical properties near this QPT, we have performed planar tunneling measurements on $Sr_3Ru_2O_7$ single crystals. Our previously reported work revealed an unusual oscillation in tunneling magnetoresistance. We here report further characterization of this new phenomenon, showing that the oscillation has a systematic dependence on the tunnel barrier, temperature, and the field orientation. The oscillation pattern is identical even for different barrier materials (such as Al_2O_3 and SiO), but is only prominent when the junction resistance is between roughly 15Ω and $1k\Omega$. The oscillation shows a field orientation dependence for H//c and H//ab, both in its pattern and its temperature dependence. The oscillation frequency for H//ab appears to be smaller than that for H//c. We discuss possible origins of this unusual oscillation phenomenon in light of recent bulk measurements on Sr₃Ru₂O₇.

¹Present address: University of St. Andrews

Joe Hooper

Date submitted: 29 Nov 2004

Electronic form version 1.4