An Ab Initio Study on Silicon and Germanium Nanotubes
PRACHI PRADHAN, ASOK K. RAY, The University of Texas at Arlington —
First principles calculations using hybrid density functional theory have been per-
formed to examine the electronic and geometric structure properties of single-walled
silicon (SWSiNT) and germanium (SWGeNT) nanotubes. Finite clusters $X_mH_n(X$
$=\text{Si or Ge})$ are used to model the nanotubes (e.g. the smallest SWSiNT is modeled
as $\text{Si}_{60}H_{12}$). Hydrogen termination is done to simulate the effect of longer tubes as
well as to take care of end effects. A pseudopotential basis set has been used for
the silicon atoms1 and complete geometry optimizations of the structures has been
carried out using the Gaussian 03 suite of programs.2 Computer simulations predict
that the existence and stability of the nanotubes are highly dependent on the ratio of
the sp^2 to sp^3 hybridization. Results will be presented on cohesive energies, HOMO-
LUMO gaps, and other electronic structure properties and their dependence on the
tube diameter. We will discuss the density of states (DOS) to explain the possible
metallic or semi-conducting character of the tubes. Detailed comparisons with pub-
lished data in the literature will also be presented. * Work supported, in part, by