Abstract Submitted for the MAR05 Meeting of The American Physical Society

2D Metal-insulator transition behavior in a high mobility strained Si quantum well K. LAI, D.C. TSUI, S. LYON, Princeton Univ., W. PAN, Sandia Natl. Labs, M. MUHLBERGER, F. SCHAFFLER, Univ. Linz — The apparent metal-insulator transition is observed in a high quality two-dimensional electron system (2DES) in the strained Si quantum well of a $Si/Si_{1-x}Ge_x$ heterostructure with mobility $\mu = 1.9 \times 10^5 \text{ cm}^2/\text{Vs}$ at $n = 1.45 \times 10^{11} \text{ cm}^{-2}$. The critical density n_c , where the thermal coefficient of low T resistivity changes sign, is $0.32 \times 10^{11} \text{cm}^{-2}$, much smaller than the n_c of $\sim 0.8 \times 10^{11} \text{ cm}^{-2}$ seen in clean Si-MOSFET's (usually with a peak $\mu \sim 4 \times 10^4 \text{ cm}^2/\text{Vs}$). This result is consistent with previous observations in the GaAs systems that n_c decreases with increasing 2DES quality. Moreover, in low n range, for 0.27×10^{11} cm⁻² < $n < 0.35 \times 10^{11}$ cm⁻², close to the transition region, the conductivity increases roughly linearly with T around the Fermi temperature and, surprisingly, all the curves of different densities are parallel to each other for T > 1.2K. In the higher density range where the 2DES shows metallic-like behavior, the in-plane magnetoresistance $\rho(B)$ first increases $\sim B^2$ and then saturates to a finite value $\rho(B_C)$ for B>B_C. The full spin-polarization field B_C decreases monotonically with n but appears to saturate to a finite value as $n \rightarrow 0$. We find $\rho(B_C)/\rho(0) \sim 1.8$ for all the densities ranging from 0.35 to $1.45 \times 10^{11} \text{cm}^{-2}$ and, when plotted versus B/B_C , collapse onto a single curve.

> Keji Lai Princeton Univ.

Date submitted: 29 Nov 2004

Electronic form version 1.4