Abstract Submitted for the MAR05 Meeting of The American Physical Society

Elastic phase diagrams of ternary Ge-P-S bulk glasses U. VEM-PATI, P. BOOLCHAND, University of Cincinnati — Elastic phases of network glasses can be identified from a measurement of the non-reversing enthalpy (ΔH_{nr}) near T_q in T-modulated DSC. Glasses at low mean coordination number $r < r_c(1)$ possess a narrow $\Delta H_{nr}(T)$ term that generally increases by an order of magnitude upon aging, which is characteristic of mechanically floppy phases. Glasses in a $r_c(1)$ $< \mathbf{r} < \mathbf{r}_c(2)$ range possess a ΔH_{nr} term that is minuscule and does not age, which is characteristic of *intermediate* or *self-organized phases* (IP). And glasses at high $r > r_c(2)$ possess a broad and asymmetric $\Delta H_{nr}(T)$ term that ages, which is characteristic of stressed rigid phases. Raman scattering and MDSC measurements on ternary $\text{Ge}_x P_x S_{1-2x}$ glasses have now been performed¹ and show $r_c(1) = 2.270$ and $\mathbf{r}_{c}(2) = 2.405$, yielding an IP width ($\Delta \mathbf{r}$) of 0.135. Here $\mathbf{r} = 2 + 3\mathbf{x}$. In corresponding selenide glasses the IP width is found² at 0.210. The reduced width of the IP in sulfide glasses is attributed to S_8 , P_4S_7 and P_4S_{10} molecules demixing. By combining the present results with those on binary Ge-S and P-S glasses, elastic phase diagrams of ternary Ge-P-S glasses have now been constructed, and provide a global view of the three elastic phases.

1. U. Vempati and P. Boolchand, J. Phys.: Cond. Matter, 16 S5121 (2004)

2. S. Chakravarty et al. J. Phys.: Cond. Matter (in press) Supported by NSF grant DMR 04-56472

> Udaya Vempati University of Cincinnati

Date submitted: 30 Nov 2004

Electronic form version 1.4