Abstract Submitted for the MAR05 Meeting of The American Physical Society

Raman pressure effects and internal stress in network glasses FEI WANG, S. MAMEDOV, P. BOOLCHAND, B. GOODMAN, Univ. of Cincinnati, MEERA CHANDRASEKHAR, Univ. of Missouri — Intermediate phases are predicted to be unstressed elastic phases of network glasses. The case of binary Ge_xSe_{1-x} glasses reveal the intermediate phase to reside in the 0.20 < x < 0.25 range¹. We have now performed² Raman scattering on Ge_xSe_{1-x} glasses under pressure and find a steady increase in the frequency of modes of corner-sharing $GeSe_4$ tetrahedra when the external pressure P exceeds a threshold value P_c . The threshold pressure $P_c(x)$ decreases with x to nearly zero for 0.20 < x < 0.25, then increases up to x = 1/3. P_c indicates the presence of local stress at the Raman active units; so its vanishing suggests that these units are part of an isostatically rigid backbone. Isostaticity also accounts for the non-aging behavior of glasses observed in this same composition range² that is identified with the intermediate phase in this binary glass system.

P.Boolchand et al. JNCS **293-295**, 348 (2001).
Fei Wang et al. Cond Matt 0408502 (to appear in Phys. Rev. B)

Supported by NSF grant DMR-0456472

Fei Wang

Date submitted: 30 Nov 2004

Electronic form version 1.4