Quantum magnetic excitations from stripes in copper-oxide superconductors

JOHN TRANQUADA, Brookhaven National Laboratory

Recent inelastic neutron scattering studies show that the magnetic excitation spectra of two well-studied families of cuprate superconductors are much more similar than previously believed. In particular, I will present results we have obtained on La$_{2-x}$Ba$_x$CuO$_4$ (LBCO) with $x=0.125$ [1,2]. Using very large single crystals grown at Brookhaven, we were able to measure the magnetic excitations up to 200 meV using the MAPS time-of-flight spectrometer at the ISIS spallation source. While the lowest energy excitations are split incommensurately, these disperse inwards towards the antiferromagnetic wave vector with increasing energy, merging at \sim50 meV. At higher energies the excitations disperse outwards again. There is a significant enhancement of the \mathbf{Q}-integrated magnetic scattering near \sim50 meV compared to lower energies, suggestive of quantum correlations and distinct from spin-wave predictions. Many features of the spectrum are quite similar to those found in YBa$_2$Cu$_3$O$_6$ [3]. One can qualitatively characterize the results with a universal excitation spectrum, together with a material-dependent spin gap in the superconducting state. It is important to note that the LBCO sample exhibits static stripe order [2], as this has significant implications for the origin of the magnetic excitations in superconducting cuprates.

I gratefully acknowledge my many experimental collaborators. This work is supported by the Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-98CH10886.