Abstract Submitted for the MAR05 Meeting of The American Physical Society

Ground and excited state properties of CaB₆ determined byLDA and screened-exchange LDA investigations¹ Y.C. HSUE, J.E. MEDVEDEVA, A.J. FREEMAN, Northwestern Univ. — CaB₆ has recently attracted great interest because it exhibits weak high-temperature ferromagnetism when lightly doped by La and could possibly be useful in room temperature spintronic devices. In pure CaB_6 , its semiconductor nature has now been established experimentally². Questions about its theoretical description are centered about the fact that first principles LDA calculations underestimate band gaps and in CaB_6 results in a semi-metal with a 0.3 eV overlap at the X point. Here we use the full-potential linearized augmented plane wave method (FLAPW)³ within both the LDA and the screened-exchange LDA (sX-LDA) to determine the ground and excited state properties of CaB_6 . First, we did the geometry optimization with LDA and used this optimized structure in sX–LDA calculations. We find that CaB_6 is a semiconductor with a gap of 0.68 eV at X in agreement with the recent experimental results. We also calculated the optical properties with spin-orbit coupling and full matrix elements. Finally, results of similar calculations for Eu and La doped CaB₆ will be reported.

¹Supported by Grant DARPA ²B.K. Cho, et.al., PRB 69, 113202 (2004) and references therein. ³Wimmer, Krakauer, Weinert and Freeman, PRB 24, 864(1981)

> Art Freeman Northwestern University

Date submitted: 02 Dec 2004

Electronic form version 1.4