Abstract Submitted for the MAR05 Meeting of The American Physical Society

Novel Chalcogenide Buffer Layer for Oxide Heteroepitaxy on $Si(001)^1$ D. SCHMIDT², T. OHTA³, Q. YU, F. S. OHUCHI, M. A. OLMSTEAD, U. of Washington, Seattle — We have developed a novel chalcogenide buffer layer for heteroepitaxial growth of oxides on silicon and applied it to growth of anatase TiO₂. Anatase, nearly lattice-matched to Si(001), is of interest for both spintronic and high-K dielectric applications: it can be made ferromagnetic at room temperature by doping with Co, and has a very large dielectric constant. Through use of a subnanometer buffer layer, Ga₂Se₃ grown on As terminated Si(100), we have been able to grow anatase nanocrystals on Si(001) without any detectable substrate oxidation or silicide formation. The As termination prevents silicon-selenide formation, and the gallium selenide prevents substrate oxidation. The cubic structure of Ga₂Se₃ offers a stable face for TiO₂(001) growth. In addition, the Ga₂Se₃ layer, with a lattice constant between Si and TiO₂, has a structure with inherent vacancies that can absorb strain, acting as a strain relief layer for the TiO₂ on Si.

¹Supported by NSF-ECS 0224138

²Support from UW-PNNL Joint Institute for Nanoscience

³Support from UW-Nanotechnology UIF; Current Address: Adv. Light Source, Berkeley

Marjorie Olmstead U. Washington, Seattle

Date submitted: 29 Nov 2004

Electronic form version 1.4