Fractional-exponent behavior of magnetization near T_c in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$

LU LI, YAYU WANG, Physics Dept., Princeton Univ., M.J. NAUGHTON, Physics Dept., Boston College, S. ONO, Y. ANDO, Central Research Inst. Electric Power Industry, Tokyo, N.P. ONG, Physics Dept., Princeton Univ. — Using high-resolution torque magnetometry, we have investigated in detail how long-range phase coherence develops as the critical temperature T_c (88.7 K) is approached in optimally-doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ with field H\parallel c. Three distinct regimes are observed. Above \sim92 K, $|M|$ increases rapidly as $T \to T_c$ in step with the vortex Nernst signal. M is strictly linear in H in weak H, but shows strong curvature at large H (5-14 T). The curvature provides a determination of the correlation length ξ_{sc} which grows as a power law, viz. $\xi_{sc} \sim 1/t^{\nu}$. In the second regime, 86 < T < 92 K, M becomes nonlinear in H, viz. $M \sim H^{\alpha(T)}$, where the exponent $\alpha(T)$ decreases from 1 to 0. This interesting fractional-exponent behavior is highly unusual and fits poorly with conventional pictures of ‘fluctuating diamagnetism.’ As previously known, M is virtually H independent below 2 Tesla at the “crossing temperature” $T_{cr} = 86$ K. Below T_{cr}, M is a function of $\log H$. We compare this behavior with predictions of the 3DXY and Kosterlitz-Thouless theory. Supported by funds from the U.S. National Science Foundation under grant DMR 0213706.