Abstract Submitted for the MAR05 Meeting of The American Physical Society

Optical properties of InAsP alloys¹ S.G. CHOI, C.J. PALMSTROM, Chemical Engineering and Materials Science Dept., Univ. of Minnesota, Minneapolis, MN 55455, T.J. KIM, Y.D. KIM, Physics Dept., Kyung Hee Univ., Seoul 130-701, Korea, D.E. ASPNES, Physics Dept., North Carolina State Univ., Raleigh, NC 27695 — Optical properties of $InAs_xP_{1-x}$ ternary alloys grown by chemical beam epitaxy (CBE) on S-doped InP(100) substrates are presented. Room-temperature pseudodielectric function spectra from 1.5 to 6.0 eV were measured by spectroscopic ellipsometry. The E_0 , E_1 , $E_1 + \Delta_1$, E'_0 , E_2 , and $E_2 + \delta$ interband critical point (CP) structures were observed in the spectra. By applying the parabolic-band critical point model to numerically calculated second-energy-derivatives of these spectra, accurate values of the CP parameters and their dependence on alloy composition xwere obtained. The experimentally determined variation of the E_1 and E_2 CP energies and the spin-orbit splitting Δ_1 with alloy composition were in good agreement with the theoretical calculation based on the Van-Vechten-Berolo-Woolley (VV-B-C) model.

¹Supported by DARPA and ONR

Sukgeun Choi University of Minnesota

Date submitted: 29 Nov 2004

Electronic form version 1.4