Local Spin Anisotropy Effects upon the Magnetization of Single Molecule Dimers1 RICHARD KLEMM, Kansas State University, DMITRI EFREMOV, Technische Universitaet Dresden — We present an exactly solvable model of equal spin \(s_1 \) single molecule magnetic dimers. The spins within each dimer interact via the Heisenberg and the most general quadratic global and local anisotropic spin exchange interactions, and with the magnetic induction \(B \). For antiferromagnetic couplings and \(s_1 > 1/2 \), the low temperature magnetization \(M(B) \) exhibits a rich variety of steps of unequal width, the structure and anisotropy of which depend upon the various local anisotropic spin exchange energies. Specific numerical results for Fe\(_2 \) \(s_1 = 5/2 \) dimers will be presented.

1supported in part by the NSF through contract NER-0304665

Richard Klemm
Kansas State University

Date submitted: 29 Nov 2004

Electronic form version 1.4