Pressure-temperature magnetic phase diagram of Au$_4$V investigated by electrical resistivity using Designer Diamond Anvils1 DAMON JACKSON, CHANTEL ARACNE, SAM WEIR, Lawrence Livermore National Laboratory, JASON JEFFRIES, BRIAN MAPLE, University of California, San Diego, YOGESH VOHRA, University of Alabama, Birmingham — The electrical resistivity of Au$_4$V has been measured up to a pressure of 20 GPa between room temperature and 15 K. These measurements were performed using designer diamonds, which consist of lithographically deposited tungsten micro-leads embedded within a single crystal of diamond. The electrical resistivity of Au$_4$V has a kink in its slope at 45 K under ambient pressure, which is associated with a ferromagnetic transition. Designer diamonds can be used with a diamond anvil cell to track the pressure dependence of this ferromagnetic transition, which is found to increase under the application of pressure.

1This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.