Thermodynamics of ultracold fermions in traps in the strongly interacting regime1 QIJIN CHEN, University of Chicago, JELENA STAJIC, Los Alamos National Lab, KATHRYN LEVIN, University of Chicago — We discuss the entropy S, energy E for trapped fermionic gases, over the entire range from BCS to BEC, and over all T from below to above T_c. Our work, which is based on the conventional mean field ground state, shows that both “bosonic” and fermionic excitations contribute to S, and that boson-fermion interactions are essential. Trap edge effects lead to low T power law contributions for the fermions in the unitary and BCS regimes, while bosons contribute to S with a $T^{3/2}$ dependence. Comparison with recent experiments by the Thomas group (cond-mat/0409283) shows very good quantitative agreement. This lays the groundwork for implementing thermometry in strongly interacting Fermi gases.

1This work was supported by NSF-MRSEC Grant No.DMR-0213745 and in part by the Institute for Theoretical Sciences, ND-ANL (QC).

Qijin Chen
University of Chicago

Date submitted: 01 Dec 2004 Electronic form version 1.4