Magnetic fluctuations of filled skutterudites emerging in the transition region between singlet and triplet states

TAKASHI HOTTA, Advanced Science Research Center, Japan Atomic Energy Research Institute — In order to clarify magnetic properties of filled skutterudites, we investigate the Anderson model including seven f orbitals hybridized with a_u conduction band. By using the numerical renormalization group method, we evaluate magnetic susceptibility and entropy of f electron for $n=1\sim13$, where n is local f-electron number. Then, we find that f-electron states are clearly distinguished as itinerant Γ_7 and localized Γ_8 in the filled skutterudite structure. For $n=2$ corresponding to Pr-based filled skutterudites, even if the ground state is Γ_1 singlet, there remain significant magnetic fluctuations from $\Gamma_4^{(2)}$ triplet state with small excitation energy. We envision a scenario that unconventional superconductivity is induced by such magnetic fluctuations in a limited region in which singlet and triplet states are interchanged.

Takashi Hotta
Advanced Science Research Center, Japan Atomic Energy Research Institute

Date submitted: 30 Nov 2004

Electronic form version 1.4