Abstract Submitted for the MAR05 Meeting of The American Physical Society

Magnetisation and the Irreversibility Line in Strongly Underdoped YBa₂Cu₃O_{7- δ} ALIX MCCOLLAM, STEPHEN JULIAN, University of Toronto, RUIXING LIANG, DOUGLAS BONN, WALTER HARDY, University of British Columbia — Torque magnetometry experiments were made on a high purity single crystal of YBa₂Cu₃O_{6.354}. The irreversibility line $H_{irr}(T)$ was measured and found to lie very low in field, with a high temperature end-point at 5 K, far below the superconducting T_c of 12 K, and a steep upturn at the lowest temperatures. Considerable suppression of $H_{irr}(T)$ in the presence of a small AC magnetic field indicates that the irreversibility line is distinct from a flux-lattice melting transition in this material. A second feature $H^*(T)$, observed in the magnetisation data at fields above $H_{irr}(T)$, was unaffected by a similar AC field. Torque measurements as a function of crystal orientation revealed a sharp lock-in transition at angles of field close to the *ab*-plane, and illustrate the high degree of anisotropy in this system at very low doping levels.

> Alix McCollam University of Toronto

Date submitted: 30 Nov 2004

Electronic form version 1.4