Superconducting Mg(B$_{1-x}$C$_x$)$_2$ with Titanium Additions

D.K. FINNEMORE, R.H.T. WILKE, S.L. BUD’KO, P.C. CANFIELD, Ames Laboratory, Iowa State University and Department of Physics and Astronomy, Iowa State University, RAYMOND J. SUPLINSKAS, Specialty Materials, Inc., S.T. HANNAHS, National High Magnetic Field Laboratory, Florida State University — We have studied the superconducting properties of Mg(B$_{1-x}$C$_x$)$_2$ up to x = 0.021 with and without 0.5% titanium impurities to determine the feasibility of simultaneously enhancing both the upper critical field and critical current density via chemical additions. Carbon substitutes for boron, increasing H$_c$2 by increasing scattering within the π band. Titanium forms inter and intragranular precipitates of either TiB or TiB$_2$, which enhance flux pinning and J$_c$. The two effects appear additive and result in an increase in J$_c$ and H$_c$2 values.