Control of La$_{0.5}$Ca$_{0.5}$MnO$_3$ superstructure through epitaxial strain release

S. COX, E.J. ROSTEN, J.C. LOUDON, J.C. CHAPMAN, D.-J. KANG, M.J. CALDERON, P.B. LITTLEWOOD, P.A. MIDGLEY, N.D. MATHUR, University of Cambridge — Intergranular variations of superlattice periodicity in polycrystalline La$_{1-x}$Ca$_x$MnO$_3$ have been attributed to variations in strain. Here we control the superlattice periodicity within a continuous crystal. A focussed ion beam microscope (FIB) was used to pattern an electron transparent window in an untwinned coherently strained epitaxial thin film of La$_{0.5}$Ca$_{0.5}$MnO$_3$ grown on NdGaO$_3$ by pulsed laser deposition. It was found that the wavenumber could be reduced by 3% in regions isolated by cuts from the rest of the window. We attribute this variation to the release of epitaxial strain beyond the resolution of the electron microscope.

This work was funded by the UK EPSRC and the Royal Society

Susan Cox
University of Cambridge

Date submitted: 02 Dec 2004

Electronic form version 1.4