Synchrotron X-ray Specular Reflectivity Measurements of Dotriacontane Films Adsorbed on a Ag(111) Surface

M. BAI, S. TROGISCH, H. MO, H. TAUB, U. Mo.-Columbia, S.N. EHRLICH, Brookhaven Nat. Lab., D. WERMEILLE, Iowa St. U., U.G. VOLKMAN, P. U. Catolica Chile, F.Y. HANSEN, Tech. U. Denmark — Alkane films adsorbed on metal surfaces are of interest as model lubricants. To investigate the structure of both solid and liquid films of intermediate-length alkanes, we have conducted a series of x-ray specular reflectivity measurements as a function of temperature on dotriacontane (n-C\textsubscript{32}H\textsubscript{66} or C\textsubscript{32}) films vapor-deposited on a single-crystal Ag(111) surface in UHV. The initial C\textsubscript{32} coverage was sufficient to observe coexistence of a multilayer film with preferentially oriented bulk C\textsubscript{32} particles. After heating the samples to remove the bulk particles, we obtained specular reflectivity curves at room temperature consistent with one complete C\textsubscript{32} layer followed by partial second and third layers of progressively smaller occupancy. In each layer, the molecules are oriented with their long axis parallel to the surface. We find no evidence of a perpendicular monolayer structure as observed for C\textsubscript{32} films deposited from solution.2 From heating studies, we determine the melting and desorption temperatures of the first and second C\textsubscript{32} layers.2H. Mo \textit{et al.}, Chem. Phys. Lett. 377, 99 (2003).

1Supported by Grant Nos. NSF DMR-0109057 and DMR-0411748, DOE W-7405-Eng-82 and W-31-109-Eng-38, and FONDECYT 1010548 and 7010548.