Ordered Oxygen Vacancy Structure on the Rutile TiO$_2$ (100) Surface

OLIVER WARSCHKOW, School of Physics, University of Sydney, Australia, YINGMIN WANG, ARUN SUBRAMANIAN, LAURENCE D. MARKS, MARK ASTA, Department of Materials Science and Engineering, Northwestern University, Evanston IL, DONALD E. ELLIS, Department of Physics and Astronomy, Northwestern University, Evanston IL — We report the structure of a c(2x2) reconstruction of the Rutile TiO$_2$ (100) surface obtained by a combination of transmission electron diffraction (TED), direct methods analysis and density functional calculations. The surface layer is found to be Ti$_2$O$_3$ stoichiometric and characterized by an ordered array oxygen vacancies in the subsurface layer. Annealed under oxygen flow, the structure is metastable but relatively long-lived, suggesting that oxygen uptake from the gas-phase is kinetically hindered. A density functional theory construction of the surface phase diagram supports this interpretation. We compare and contrast our reconstruction with similarly reduced reconstructions reported in the literature for the TiO$_2$ (110) surface.

Oliver Warschkw
School of Physics, University of Sydney, Australia

Date submitted: 05 Jan 2005

Electronic form version 1.4