MAR05-2004-002399

Abstract for an Invited Paper for the MAR05 Meeting of the American Physical Society

Heisenberg antiferromagnet on the pyrochlore lattice OLEG TCHERNYSHYOV, Johns Hopkins University

The Heisenberg antiferromagnet on the network of corner-sharing tetrahedra (the "pyrochlore lattice") is arguably the world's most frustrated system: the classical version of this magnet has a ground state with an extensive entropy and shows no sign of magnetic order in numerical simulations [1]. A real-life incarnation of this model is found in ZnCr_2O_4 , which exhibits several peculiar effects traceable to the strong frustration: a spin-Peierls-like phase transition [2], a strongly correlated paramagnetic state with zero modes [3], and a magnetization plateau in high magnetic fields [4]. I will review recent theoretical and experimental developments in this area of research.

[1] R. Moessner and J. T. Chalker, Phys. Rev. B 58, 12049 (1998).

[2] S.-H. Lee *et al.*, Phys. Rev. Lett. **84**, 3718 (2000).

[3] S.-H. Lee *et al.*, Nature **418**, 856 (2002); cond-mat/0208587. [4] K. Penc, N. Shannon, and H. Shiba, Phys. Rev. Lett. **93**, 197203 (2004).