Heisenberg antiferromagnet on the pyrochlore lattice
OLEG TCHERNYSHYOV, Johns Hopkins University

The Heisenberg antiferromagnet on the network of corner-sharing tetrahedra (the “pyrochlore lattice”) is arguably the world’s most frustrated system: the classical version of this magnet has a ground state with an extensive entropy and shows no sign of magnetic order in numerical simulations [1]. A real-life incarnation of this model is found in ZnCr$_2$O$_4$, which exhibits several peculiar effects traceable to the strong frustration: a spin-Peierls-like phase transition [2], a strongly correlated paramagnetic state with zero modes [3], and a magnetization plateau in high magnetic fields [4]. I will review recent theoretical and experimental developments in this area of research.