Inference of Schrödinger’s Equation from Classical Wave Mechanics\cite{1} P-I. JOHANSSON, Uppsala University, SWE, J.X. ZHENG-JOHANSSON, IOFPR, SWE — A localized oscillatory point charge \(q \) generates in a one-dimensional box electromagnetic waves which may be generally described by monochromatic plane waves \(\{ \varphi_i = C_ke^{i(KX - \Omega T + \alpha_i)} \} \) of angular frequency \(\Omega \), wavevector \(K = \Omega/c \), velocity (of light) \(c \), and initial phases \(\{ \alpha_i \} \). \(q \) and \(\{ \varphi_i \} \) as a whole is here taken as a particle, which total energy \(E \) and mass \(M \) are given by the basic equations
\[
E = \hbar \Omega = Mc^2, \quad 2\pi \hbar \text{ being Planck constant. (For example, } q = -e \text{ and } M = 511 \text{ keV give an electron.) }
\]
\(\{ \varphi_i \} \) as incident and reflected and those from the charge as reflected in the box superimpose into a total wave \(\psi = \sum \varphi_i \) that, as with \(\varphi_i \), obeys the classical wave equation (CWE):
\[
c^2 \frac{d^2 \psi}{dX^2} = \frac{d^2 \psi}{dT^2}.
\]
If now the particle is traveling at velocity \(v \), in a potential field \(V = 0 \) here (see Ref. 2004b for \(V \neq 0 \)), then \(\{ \varphi_i' \} \) are Doppler effected and form a total wave \(\psi' = \Phi \Psi \), with \(\Psi = C \sin(KdX)e^{i\Omega dT} \) being the envelope about a beat wave and identifiable as de Broglie wave of angular frequency \(\Omega_d = \Omega(v/c)^2 \), and \(\Phi \) an undisplaced monochromatic wave. Using \(\psi' \) in CWE gives upon decomposition a separate equation describing the particle dynamics,
\[
-\frac{i\hbar}{2M} \frac{\partial^2 \Psi(X,T)}{\partial X^2} = \hbar \frac{\partial \Phi(X,T)}{\partial T}, \quad \text{which is equivalent to Schrödinger’s equation.}
\]