First Principles Study of Electronic Structure of BF3-NH3 Complex and Associated Properties

ARCHANA DUBEY, LEE CHOW, Dept. of Physics, Univ. of Central Florida, Orlando, MAHENDRA K. MAHANTI, North Eastern Hill University, Shillong, India, ROGER PINK, M. B. HUANG, R. H. SCHEICHER (*), T. P. DAS (**), Dept. of Physics, SUNY at Albany, NY —

BF₃ is a planar molecule with three-fold symmetry which is widely used to promote various organic reactions such as Friedel-Crafts acylations and alkylations. To obtain a thorough understanding of the mechanisms for this role of BF₃, we are studying from first-principles the electronic structures of BF₃ and its complexes with NH₃.

The procedure used is the first principles Hartree-Fock-Roothaan procedure combined with many body perturbation theory. The results for BF₃-NH₃ system will be reported, such as the binding energy and equilibrium geometry of the complex, the nature of the B-N bond and the changes in the B-F and N-H bond strengths on complex formation. The Nuclear Quadrupole Interactions of the 19F* (spin 5/2), 14N, 11B, and 2H will be presented and compared with available experimental data.

(*) Present Address: Dept. of Physics, Uppsala University, Sweden
(**) Also: Dept of Physics, University of Central Florida, Orlando, Florida

Ralph Scheicher
Uppsala University

Date submitted: 30 Nov 2004