Variable temperature magnetic force microscopy of patterned \(\text{La}_{0.6}\text{Ca}_{0.4}\text{MnO}_3 \) devices

CASEY ISRAEL, CHANGBAE HYUN, ALEX DE LOZANNE, Department of Physics, University of Texas at Austin, B.B. VAN AKEN, D. SÁNCHEZ, L. GRANJA, L.E. HUESO, N.D. MATHUR, Department of Materials Science, University of Cambridge — Patterned \(\text{La}_{0.6}\text{Ca}_{0.4}\text{MnO}_3 \) films have been fabricated into planar devices with the intention of studying the properties of domain walls in colossal magnetoresistive films doped near phase boundaries. The phase balance is very sensitive near phase boundaries and may lead to interesting phenomena associated with domain walls. The field dependent transport data from these devices show features which suggest domain configuration changes that can be imaged by magnetic force microscopy (MFM). We present variable temperature MFM images of these devices in applied fields and correlate the field dependent micromagnetic structure to the field dependent transport data.