Abstract Submitted for the MAR05 Meeting of The American Physical Society

Intrinsic vacancy induced nanoscale wire structure in heteroepitaxial Ga₂Se₃/Si(001)¹ T. OHTA², D. S. SCHMIDT³, A. KLUST⁴, S. MENG⁵, Q. YU, M. A. OLMSTEAD, F. S. OHUCHI, U. of Washington, Seattle — A highly anisotropic growth morphology is found for heteroepitaxial gallium sesquiselenide (Ga₂Se₃) on the lattice matched substrate, arsenic-terminated Si(001). This anisotropic, nanowire structure is attributed to surface coalescence of the intrinsic vacancies in β -Ga₂Se₃, a defected zinc-blende semiconductor with every third Ga site vacant. Scanning tunneling microscopy of Ga₂Se₃ films reveals nanoscale, wirelike structures covering the surface in parallel lines, less than 1 nm wide and up to 30 nm long. Core-level photoemission spectroscopy and diffraction reveals the local structure of buried Ga and Se atoms to reflect bulk β -Ga₂Se₃, which contains ordered (110) arrays of Ga vacancies. The semiconducting, passivated wires form perpendicular to the underlying As-dimer rows of the Si(001):As substrate, and continue to lie in the same direction, with bilayer height differences, as the film grows thicker.

¹Supported by NSF-DMR 0102427

²Supported by UW Nanotechnology UIF; Current Address: Advanced Light Source, Berkeley

³Supported by UW-PNNL Joint Institute for Nanoscience

⁴Current Address: Stanford University, Stanford, CA

⁵Current Address: Micron Technologies, Inc., Boise, ID

Marjorie Olmstead U. of Washington, Seattle

Date submitted: 30 Nov 2004

Electronic form version 1.4