Microsecond spin-flip times for localized donors in GaAs
JOHN COLTON¹, Naval Research Laboratory, Washington DC, and Physics Dept, University of Wisconsin, La Crosse WI

One of the central tasks in developing spin-based quantum computing is the development of materials which have long spin lifetimes. Observations of long electron spin lifetimes (hundreds of ns) in n-type GaAs dating back to Kikkawa and Awschalom in 1998 [1] have stimulated much excitement in the field, and many groups have similarly made observations of the inhomogeneous T_2^* lifetime of electrons in GaAs in the ns regime. The homogeneous dephasing time, T_2, has not yet been measured, although it is expected to be much longer. Here, a series of measurements of lifetimes [2] are described for donors in lightly n-type GaAs doped at 3E14, 1E15, and 3E15 cm$^{-3}$ that mimic spin memory in doped quantum dots. Hanle effect measurements yield T_2^* at close to 0T, magnetic resonance measurements provide T_2^* at 40 mT, and Kerr rotation measurements provide T_2^* at higher fields. The measured T_2^* values for the 3E14 sample are consistent with full electron localization. A new pump-probe technique using electronic delays between pulses has been used to measure spin lifetimes into the μs range. This time-resolved technique provides measurements of the spin-flip time (often labeled T_S, which is essentially the same as T_1) for two of the samples at a range of fields and temperatures. T_S is greater than 1 μs for B>0.6T at 1.5K and for B>2.5T at 6 K. Since T_2 is limited by the spin-flip time, these measurements show the range of temperature and magnetic field where very long T_2’s are possible. [1] Phys Rev Lett 80, 4313 (1998). [2] J.S. Colton et al., Phys Stat Sol B 233, 445 (2002); Phys Rev B 67, 165315 (2003); Phys Rev B 69, 121307(R) (2004); Solid State Comm 132, 613 (2004).

¹Now at UW-L. Most of the work was performed while JSC was an NRC Research Associate at NRL, in collaboration with T.A. Kennedy, A.S. Bracker, D. Gammon, J.B. Miller, and M. Scheibner, and was supported by DARPA and ONR.