Superstructures in superconductors: The case of YBCO

ZA-HIRUL ISLAM, Advanced Photon Source (APS), Argonne National Laboratory (ANL), X. LIU, S.K. SINHA, U. of California San Diego, J.C. LANG, APS/ANL, S.C. MOSS, U. of Houston, D. HASKEL, G. SRAJER, APS/ANL, B.W. VEAL, U. WELP, MSD/ANL, D. WERMEILLE, MUCAT-APS/ANL — Superstructures characterized by \(q = (q_x, 0, 0) \) are observed throughout the phase diagram of yttrium-barium cuprates (YBa\(_2\)Cu\(_3\)O\(_{6+x}\), YBCO); \(q \) decreases with doping from \(\frac{1}{2} \) (2-unit-cell) in the heavily underdoped compound to \(\frac{1}{5} \) in the overdoped material. A 4-unit-cell superstructure is stable in the vicinity of optimal doping. The superstructures in YBCO correspond to short-range ordered regions of coupled atomic displacements on neighboring CuO, BaO, and CuO\(_2\) planes, respectively. T-dependent measurements suggest that these “nanodomains” experience anharmonic thermal motion. These regions induce a long-range strain in the host, which manifests as “bow-tie”-shape Huang diffuse scattering below \(\sim 200 \) K. X-ray diffuse scattering results will be presented within the context of the oxygen ordering and the phase diagram.

\(^1\)APS is supported by DOE/BES, under Contract No. W-31-109-ENG-38.