Spin injection from CoFe/MgO tunnel injectors into GaAs

ROGER WANG, IBM Almaden Research Center and Stanford University, XIN JIANG, IBM Almaden Research Center, ROBERT SHELBY, IBM Almaden Research Center, SETH BANK, Stanford University, JAMES HARRIS, Stanford University, STUART PARKIN, IBM Almaden Research Center — The primary goal of research in spin injection has been to create a population of highly spin-polarized carriers inside a semiconductor at room temperature for potential manipulation in a spin-based device. Using quantum well electroluminescence detection, the CoFe/MgO tunnel spin injector has demonstrated greater than 50 % polarization of electrons inside GaAs at 100 K as well as polarizations exceeding 30 % at 290 K. In addition, the structures are thermally stable, showing no decrease in injected polarization even after exposure to temperatures as high as 400 °C. Both spin relaxation rate and recombination lifetime play a role in determining the measured polarization. The temperature and bias dependence of the polarization between 1.4 K - 290 K will be discussed.

Roger Wang
IBM Almaden Research Center and Stanford University

Date submitted: 30 Nov 2004