Abstract Submitted for the MAR05 Meeting of The American Physical Society

Cmcm post-perovskite: a new alumina polymorph¹ JUN TSUCHIYA, TAKU TSUCHIYA, RENATA WENTZCOVITCH, University of Minnesota — Alumina, Al₂O₃, is a model ceramic material with important applications in high pressure science, particularly as the ruby pressure scale. It is isoelectronic with MgSiO₃, the major Earth forming mineral. Here we show by first principles that the newly found post-perovskite polymorph of MgSiO₃, CaIrO₃ type structure with Cmcm symmetry, is also a stable high pressure phase of Al₂O₃ and should be stabilized in the pressure range in which the ruby scale has been calibrated. The sequence of polymorphs under pressure in these minerals is therefore analog: corundum/ilmenite \rightarrow Pbnm-perovskite for MgSiO₃ and Rh₂O₃(II) type for Al₂O₃ \rightarrow Cmcm post-perovskite. The reason for the greater stability of Pbnm-perovskite in MgSiO₃ versus Rh₂O₃(II)-type in Al₂O₃ is the difference in cation polyhedral types and volumes in the former, that favors for ABX₃-type composition.

¹JSPS, NSF/EAR 013533 (COMPRES), 0230319, and NSF/ITR 0428774.

Jun Tsuchiya University of Minnesota

Date submitted: 03 Dec 2004 Electronic form version 1.4