Abstract Submitted for the MAR05 Meeting of The American Physical Society

Doping dependence of electron-electron scattering in Na_xCoO₂ S. Y. LI, University of Sherbrooke, LOUIS TAILLEFER, University of Sherbrooke and CIAR, Canada, FANGCHENG CHOU, Y. S. LEE, Massachusetts Institute of Technology — The in-plane resistivity ρ was measured down to 40 mK for a single crystal of Na_xCoO₂ (x=0.75), which has spin-density-wave order below $T_c=22$ K. We show its Fermi-liquid ground state by observing a T^2 dependence of ρ at low temperature, $\Delta \rho = AT^2$. The measured value of coefficient $A=2.60~\mu\Omega$ cm K⁻² is about 100 and 3 times of that in Na_{0.31}CoO₂ and Na_{0.70}CoO₂, respectively, indicating an increase of electron-electron scattering upon Na doping. The enormous A, and the moderate electron specific heat coefficient γ , gives an even larger Kadowaki-Woods ratio A/γ^2 than that previously reported in Na_{0.70}CoO₂ (Li et al., Phys. Rev. Lett. 93, 056401 (2004)).

Shiyan Li University of Sherbrooke

Date submitted: 30 Nov 2004 Electronic form version 1.4