Abstract Submitted for the MAR05 Meeting of The American Physical Society

Far-Infrared Studies of the Development of the Electronic Lattices in La₂CuO_{4+0.0315} Y.H. KIM, Department of Physics, University of Cincinnati, H.H. HSIEH¹, P.H. HOR, TcSUH, University of Houston — La₂CuO_{4+0.0315} undergoes a superconducting transition with an onset at $T_c = 30$ K when it is slow-cooled at a rate of 1 K/min from the room temperature but it becomes a T_c = 15 K superconductor when quenched down to 77 K in less than 1 minute. The corresponding far-infrared reflectivity measurements reveal that there exists only one collective mode at $\omega_{G1} \sim 24 \text{ cm}^{-1}$ in the $T_c = 15 \text{ K}$ phase [1]. However, when slow-cooled, there develop a series of collective modes at $\omega_{G1} \sim 24 \text{ cm}^{-1}$, ~ 37 cm⁻¹, ω_{G3} ~ 46 cm⁻¹, and ω_{G4} ~ 60 cm⁻¹ with a complex temper- ω_{G2} ature dependences. Upon cooling, ω_{G1} and ω_{G3} show the similar behaviors as the Sr/O co-doped LSCO at the hole concentration p = 0.07 [1] while the ω_{G2} mode loses its oscillator strength for T < 150 K and the ω_{G4} mode shows no change in its strength at all temperatures. We explain the implications of our findings within the 2D electronic lattice model [1, 2].

1. Y. H. Kim and P.H. Hor, Mod. Phys. Lett. B15, 497 (2001).

2. P.H. Hor and Y.H. Kim, J. Phys.: Condens. Matter 14, 10377 (2002).

¹Present Address: Chung Cheng Institute of Technology, National Defense University, Taiwan, R.O.C.

Y.H. Kim Department of Physics, University of Cincinnati

Date submitted: 02 Dec 2004

Electronic form version 1.4