Abstract Submitted for the MAR05 Meeting of The American Physical Society

Quantumphasetransitionsof magnetic rotons JOERG SCHMALIAN, Iowa State University, Ames Lab-
oratory, MISHA TURLAKOV, Cavendish Laboratory, Univ. of Cambridge, UK —
Due to weak spin-orbit coupling, the magnetic excitations of an itinerant ferromag-
net become magnetic rotons, excitations with degenerate minima on a hypersphere
at finite wavevector. Using self-consistent Hartree and renormalization group calcu-
lations, we study weak fluctuation-driven first-order quantum phase transitions, a
quantum tricritical point controlled by anisotropy and the non-Fermi liquid behavior
associated with the large phase volume of magnetic rotons. We propose that mag-
netic rotons are essential for the description of the anomalous high-pressure behavior
of the itinerant helical ferromagnet MnSi.

Joerg Schmalian Iowa State University, Ames Laboratory

Date submitted: 30 Nov 2004

Electronic form version 1.4