Abstract Submitted for the MAR05 Meeting of The American Physical Society

Superconductors in a Strong Low-Frequency ac Electric Field¹ R. TAO, Dept.of Physics, Temple University, Philadelphia, PA — The electric-field induced ball formation has been observed for high temperature superconducting particles, MgB₂ powder, and low temperature superconducting particles in a low frequency ac electric field. Different from the situation with a static electric field, the superconducting particles in an ac field first form chains along the field direction if the electric field is below a critical value E_{c1} . As soon as the field exceeds E_{c1} , the chains are broken and the particles aggregate into balls. The experiment has found that E_{c1} is a function of frequency ω . To understand the experimental results, we consider a bulk superconductor in an ac field. The electric field is along the x direction and the bulk superconductor has its surface at x = 0, perpendicular to the field and is located at $x \ge 0$. The electric field penetrates into the superconductor: for x > 0, $\vec{E}(x) = \vec{e}_x E \exp(-x/l_s) \cos(\omega t)$, where l_s is the electric-field's penetration depth and E is the electric field at the surface of x = 0. With this model, we have found that if the electric field is strong enough, Cooper pairs near the surface are depleted and a positive surface energy is produced. This induced surface energy is responsible for the formation of superconducting balls. The critical electric field to produce the positive surface energy E_{c1} is found to be related to the binding energy of a Cooper pair $\Delta(T) = 2\epsilon_f - \epsilon$ and the frequency ω . As ω increases, E_{c1} goes up, too. A comparison between the theory and experimental results will also be made.

¹Supported by NSF Grant DMR0075780

Rongjia Tao Temple University

Date submitted: 03 Dec 2004

Electronic form version 1.4