Abstract Submitted for the MAR05 Meeting of The American Physical Society

Comparison of the electronic structures of four crystalline forms of FePO₄.¹ PING TANG, N. A. W. HOLZWARTH, Wake Forest University — The purpose of this study is to investigate the stability of FePO₄, the fully charged form of the Li ion battery material, LiFePO₄. The electronic structures of four phases of FePO₄, having the CrVO₄,² quartz,³ monoclinic,⁴ and olivine⁵ structures are studied using density functional theory with LSDA and GGA exchange-correlation functionals. A ferromagnetic spin configuration is chosen for all of the FePO₄ calculations. The band structures, density of states, and total energies are compared among all four phases. The results show that the CrVO₄ phase is metallic while the other phases are insulating. The band gaps of the insulating phases are found to increase with decreasing density of the material.

¹Supported by NSF Grant No. DMR-0405456.

²J. P. Attfield and co-workers, J. Solid State Chem. 57, 357 (1985)

³H. N. Ng and C. Calvo, *Can. J. Chem.* **53**, 2064 (1975)

⁴Y. Song and co-workers, *Inorg. Chem.* **41**, 5778 (2002)

⁵A. S. Andersson and co-workers, *Solid State Ionics* **130**, 41 (2000)

N. A. W. Holzwarth Wake Forest University

Date submitted: 30 Nov 2004

Electronic form version 1.4