Abstract Submitted
for the MAR05 Meeting of
The American Physical Society

Absence of Dipole Glass Transition for Randomly Dilute Classical Ising Dipoles

CLARE YU, JOSEPH SNIDER
University of California, Irvine — Randomly dilute dipoles with long range dipolar interactions appear in a variety of solid insulating materials. Based on theoretical studies of spin glasses with long range interactions, one would expect such dilute dipolar systems to undergo a spin glass-like transition as the temperature decreases. However, there has been no experimental evidence for such a transition in very dilute systems. One example where such a transition has not been definitively observed is two level systems that dominate the physics of glasses at low temperatures. Another is LiHo_2Y_{1-x}F_4 with \(x = 4.5\% \). We have investigated the absence of a phase transition in dilute dipolar glasses. Using Wang-Landau Monte Carlo simulations, we show that at low concentrations \(x \), dipoles randomly placed on a cubic lattice with dipolar interactions do not undergo a phase transition as the temperature decreases. We define a characteristic “glass” temperature \(T_g \) as the temperature where the distribution \(P(q, T) \) is flattest. \(q \) is the overlap order parameter. We find that in the thermodynamic limit \(T_g \) goes to zero as \(1/\sqrt{N} \) where \(N \) is the number of dipoles. The entropy per particle at low temperatures is larger for lower concentrations (\(x = 4.5\% \)) than for higher concentrations (\(x = 20\% \)).

1This work was supported by DOE grants DE-FG03-00ER45843 and DE-FG02-04ER46107.
2Present address: Salk Institute, La Jolla, CA

Clare Yu
Univ. of California, Irvine

Date submitted: 03 Dec 2004

Electronic form version 1.4