Abstract Submitted for the MAR05 Meeting of The American Physical Society

Absence of Dipole Glass Transition for Randomly Dilute Classical Ising Dipoles¹ CLARE YU, JOSEPH SNIDER², University of California, Irvine — Randomly dilute dipoles with long range dipolar interactions appear in a variety of solid insulating materials. Based on theoretical studies of spin glasses with long range interactions, one would expect such dilute dipolar systems to undergo a spin glass-like transition as the temperature decreases. However, there has been no experimental evidence for such a transition in very dilute systems. One example where such a transition has not been definitively observed is two level systems that dominate the physics of glasses at low temperatures. Another is $LiHo_xY_{1-x}F_4$ with x = 4.5%. We have investigated the absence of a phase transition in dilute dipolar glasses. Using Wang-Landau Monte Carlo simulations, we show that at low concentrations x, dipoles randomly placed on a cubic lattice with dipolar interactions do not undergo a phase transition as the temperature decreases. We define a characteristic "glass" temperature T_q as the temperature where the distribution P(q,T)is flattest. q is the overlap order parameter. We find that in the thermodynamic limit T_q goes to zero as $1/\sqrt{N}$ where N is the number of dipoles. The entropy per particle at low temperatures is larger for lower concentrations (x = 4.5%) than for higher concentrations (x = 20%).

¹This work was supported by DOE grants DE-FG03-00ER45843 and DE-FG02-04ER46107.

²Present address: Salk Institute, La Jolla, CA

Clare Yu Univ. of California, Irvine

Date submitted: 03 Dec 2004

Electronic form version 1.4