Abstract Submitted for the MAR05 Meeting of The American Physical Society

Anisotropy breaking and superconductivity in MgB₂ SABINA RUIZ, PABLO DE LA MORA, Facultad de Ciencias, UNAM, Mexico, D.F. — When magnesium is replaced by aluminium an extra 3p electron is added to the system, this 3p-electron perturbs the σ -band structure slightly, while the replacement of magnesium by scandium a 3d electron is added, this 3d electron has a large effect on the electronic structure. With aluminium replacement T_c diminishes almost linearly and disappears at ~ 0.53 Al this corresponds to the point where the Fermi level fills up the σ -bands. The electrical conductivity in the direction of the plane due to the σ -bands (σ_a^{σ}) diminishes with a very similar trend. In this case these bands electrical anisotropy (a-direction vs. c-direction, $\sigma_a^{\sigma}/\sigma_c^{\sigma}$) also diminishes. On the other hand, in ScB₂ the σ -bands lose their electrical anisotropy ($\sigma_a^{\sigma}/\sigma_c^{\sigma} \approx 3.9$), but the addition of an extra 3d electron does not raise the Fermi level above the σ -bands. Our results show that at first the anisotropy diminishes with scandium addition until ~ 0.3 Sc and then it remains almost constant, this shows a interesting parallelism with the T_c -experimental results of Agrestini et al. (2004 J. Phys. and Chem. Sol. 64, 1479), in which T_c diminishes with scandium and disappears at 0.3Sc.

Pablo de la Mora Facultad de Ciencias, UNAM, Mexico, D.F.

Date submitted: 30 Nov 2004 Electronic form version 1.4