Dynamics of Bose condensates in an optical lattice with a basis1

WEN-CHIN WU, CHOU-CHUN HUANG, National Taiwan Normal University —
Dynamics of atomic Bose-Einstein condensates in an optical lattice with a basis is investigated. For a 1D optical lattice of two types of potential barrier within a unit cell, similar to the case of a crystal lattice with two-atom basis in a unit cell, acoustic as well as optical phonons can propagate along the lattice of atom clouds. These are in addition to in-phase and out-of-phase collective excitations of the condensates. The dispersions of phonons depend crucially on the relative size of two tunneling amplitudes (J_1 and J_2) across the two barriers and the ratio of J_1, J_2 to the repulsion U between the atoms. Using a variational method, the effect of condensate breathing modes on the phonons is studied in details. The dynamic structure factor of the system is also studied.

1Research supported by National Science Council of Taiwan