Abstract Submitted for the MAR05 Meeting of The American Physical Society

Lattice dynamics of NaAlH₄ from high-temperature single-crystal Raman scattering: Evidence of highly stable AlH₄⁻ anions ERIC MAJ-ZOUB, KEVIN MCCARTY, Sandia National Laboratories, VIDVUDS OZOLINS, UCLA — Polarized Raman scattering on single crystals of NaAlH₄ has been used to determine the symmetry properties and frequencies of the Raman-active vibrational modes over the temperature range from 300 to 425 K, i.e., up to the melting point T_{melt} . Significant softening (by up to 6%) is observed in the modes involving rigid translations of Na⁺ cations and translations and librations of AlH₄⁻. Surprisingly, the data indicate mode softening of less than 1.5% for the Al-H stretching and Al-H bending modes of the AlH₄⁻ anion. These results show that the AlH₄⁻ anion remains a stable structural entity even near the melting point. The enhanced kinetics of absorption and desorption in Ti-doped NaAlH₄ powders is attributed to the effectiveness of Ti in promoting the break-up of the AlH₄⁻ anions.

> Eric Majzoub Sandia National Laboratories

Date submitted: 21 Mar 2013

Electronic form version 1.4