Abstract Submitted for the MAR05 Meeting of The American Physical Society

Microwave Conductivity Spectra in High Landau Levels under Tilted Magnetic Fields G. SAMBANDAMURTHY^{1,2}, R. M. LEWIS^{1,2}, Z. WANG^{3,1}, Y. CHEN^{2,1}, L. W. ENGEL¹, D. C. TSUI², L. N. PFEIFFER⁴, K. W. WEST⁴, ¹NHMFL, Tallahassee, FL 32306, ²EE Dept., Princeton Univ., ³Phys. Dept., Princeton Univ., Princeton, NJ 08544,⁴ Bell Labs, NJ 07974 — We present the results of a systematic study of the microwave conductivity in high Landau levels (LLs) of very clean two- dimensional electron systems (2DES), in the 20 MHz to 6 GHz range. When magnetic field (*B*) is applied perpendicular to the 2DES, a resonance that appears between LL fillings (ν) of 4.2 and 4.4 is interpreted as due to the pinning mode of bubble phase of electrons [1]. We observe that the frequency of this resonance increases as a function of *in-plane B* ($B_{||}$). A resonance associated with a Wigner crystal composed of top LL electrons or holes [2] in the ranges $1.85 < \nu < 1.95$ and $2.05 < \nu < 2.15$ similarly increases with $B_{||}$. However, the peak frequency increases asymmetrically with $B_{||}$ on either side of $\nu=2$. [1] R.M. Lewis *et al.*, PRL **89**, 136804 (2002)

[2] Y. Chen *et al.*, PRL **91**, 016801 (2003)

Sambandamurthy Ganapathy NHMFL

Date submitted: 05 Jan 2005

Electronic form version 1.4