Optical Magnetoelectric Effects in Multiferroics

TAKA-HISA ARIMA, IMRAM, Univ. Tohoku

Multiferroics show peculiar magneto-optical properties: Optical refractive index and absorption change with the reversal of the propagation vector k of the electromagnetic wave. This magneto-optic effect is clearly distinct from the conventional magneto-optics like Faraday effect and named optical magneto-electric effect, because it can be considered as the high-frequency extension of the linear magneto-electric effect in multiferroics. We have recently succeeded in detecting the optical/x-ray magneto-electric effect in a polar ferrimagnet GaFeO$_3$, where spontaneous polarization P_0 and magnetization M_0 are parallel to the b and c axes, respectively. Optical magneto-electric effects are expected to show up for the electromagnetic wave with $k//a$, as the difference in absorption and refractive index with the sign reversal of the triple product of P_0, M_0, and k. X-ray magneto-electric absorption shows large enhancement at Fe 1s-3d transition. The obtained spectra are well explained by the interference between electric dipole and electric quadrupole transitions of Fe 1s electrons in an FeO$_6$ cluster. Optical magneto-electric absorption of the order of 10^{-3} was observed at around Fe intra-atomic d-d transition. *Measurements of x-ray spectroscopy were performed at BL-1A, KEK-PF, Japan. 1M. Kubota et al., Phys. Rev. Lett. 92 (2004) 137401. 2J. H. Jung et al., Phys. Rev. Lett. 93 (2004) 037403.

1Y.Tokura, M.Kubota, J.H.Jung, Y.Kaneko, J.P.He, X.Z.Yu are acknowledged.