Low Temperature Phase Diagram in $\gamma - p$-NPNN KOICHI KAJIYOSHI1, TAKASHI KAMBE, KOKICHI OSHIMA, Graduate School of Natural Science and Tech., DEP. OF PHYSICS, FAC. OF SCIENCE, OKAYAMA UNIVERSITY TEAM — We performed the magnetic torque measurements of γ-phase of para-Nitrophenyl Nitronyl Nitroxide (being p-NPNN), which is considered to be as a quasi-one-dimensional ferromagnet, in the vicinity of $T_N (=0.65K)$ using a piezoresistive micro-cantilever. Typical sample dimension is about $0.25 \times 0.10 \times 0.10mm^3$. At 0.4K, a spin-flop transition (H_{SF}) and an antiferromagnetic-paramagnetic transition (H_C) are clearly observed in the magnetic field of about 470 Gauss and 2100 Gauss, respectively. The spin-easy axis is almost parallel to the direction to phenyl ring from the ONCNO fragments. $H - T$ phase diagram is determined properly. These results are consistent with our recent low frequency ($\sim 300 MHz$) and low-temperature (0.4 K) ESR. We will discuss the $H - T$ phase diagram of $\gamma - p$-NPNN in comparison with the one-dimensional Heisenberg ferromagnetic model.

1Doctoral Course Student

Kokichi Oshima
Graduate School of Natural Science and Tech., Okayama University

Date submitted: 05 Dec 2004