Abstract Submitted for the MAR05 Meeting of The American Physical Society

Far-infrared study of the CuO_2 chain layer magnetism in $\mathbf{Sr}_{14}\mathbf{Cu}_{24}\mathbf{O}_{41}^{1}$ TOOMAS RÕÕM, D. HÜVONEN, U. NAGEL, National Inst. Chem. Physics and Biophysics, P. HAAS, B. GORSHUNOV², M. DRESSEL, 1. Phys. Inst., Uni. Stuttgart, Germany, J. AKIMITSU, T. SASAKI, T. NAGATA, Dept. of Physics, Aoyama-Gakuin Uni., Tokyo, Japan — $Sr_{14}Cu_{24}O_{41}$ consists of two-leg ladders and chains of copper ions. Planes of ladders and chains alternate in b axis direction. Oxygen holes, present in stochiometric $Sr_{14}Cu_{24}O_{41}$, and Cu^{2+} spins in the chain are coupled into Zhang-Rice spin singlet. Chain Cu^{2+} spins that are separated by Zhang-Rice singlets form spin dimers. It is known from inelastic neutron scattering studies that because of inter-chain coupling there are two weakly dispersing triplet modes in the chain layer. We found that these triplet modes are optically active. Light is absorbed at 77.80 and $87.54 \,\mathrm{cm}^{-1}$ in zero magnetic field and T = 4 K. When magnetic field is applied along the c axis both resonances split. The triplet state g-factor is 2.048 ± 0.002 and 2.063 ± 0.006 for the lower and upper triplet. The results on the absorption line intensities and frequencies as a function of T, B_0 , and light polarization are presented.

¹Work in Tallinn was supported by EstSF Grants No. 4926 and 5553 ²Permanent address: Gen. Phys. Inst., Russian Acad. Sci., Moscow, Russia

> Toomas Rõõm National Inst. Chem. Physics and Biophysics

Date submitted: 01 Dec 2004

Electronic form version 1.4